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Abstract 

 Multi-Party Computation (MPC) protocols enable secure computations across 

multiple parties while preserving the privacy of their inputs. This paper 

provides a comparative assessment of various MPC protocols by evaluating 

their performance metrics and security implications. The study focuses on 

established protocols such as Yao's Garbled Circuits, Secure Multi-Party 

Computation (SMPC) with Homomorphic Encryption, and Secret Sharing 

Schemes. We analyze their efficiency in terms of computational and 

communication overhead, as well as their robustness against different types of 

attacks. The findings aim to guide the selection of appropriate MPC protocols 

for various applications based on specific security requirements and 

performance constraints. 
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1. Introduction: 

Multi-Party Computation (MPC) has emerged as a pivotal technology in the 

realm of secure computation, enabling multiple parties to collaboratively 

compute a function over their combined inputs while preserving the privacy of 

each participant’s data[1]. As data privacy concerns intensify and the demand 

for secure collaborative processes grows, MPC provides a robust framework for 

ensuring that sensitive information remains confidential even during joint 

computations. The significance of MPC extends across various domains, 

including secure financial transactions, privacy-preserving data analysis, and 

collaborative machine learning. Despite its importance, selecting the 
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appropriate MPC protocol for a given application involves balancing complex 

trade-offs between performance and security. 

The primary objective of this paper is to conduct a comprehensive comparative 

assessment of existing MPC protocols, with a focus on evaluating their 

performance metrics and security implications[2, 3]. By analyzing protocols 

such as Yao’s Garbled Circuits, Secure Multi-Party Computation with 

Homomorphic Encryption, and Secret Sharing Schemes, we aim to provide 

insights into their respective strengths and weaknesses. This evaluation is 

crucial for understanding how different protocols perform under varying 

computational and communication constraints, and how they withstand 

diverse security threats. The results of this study will guide researchers and 

practitioners in choosing the most suitable MPC protocol for their specific 

needs, based on detailed considerations of efficiency and security. 

The structure of this paper is organized as follows: we begin with an overview of 

key MPC protocols and their underlying mechanisms[4]. Next, we delve into an 

analysis of their performance metrics, including computational and 

communication overhead, and scalability. Following this, we explore the 

security implications of each protocol, focusing on threat models, robustness 

against attacks, and privacy guarantee. Finally, we present a comparative 

analysis of the protocols, discuss the trade-offs between performance and 

security, and offer recommendations based on various application scenarios. 

Through this detailed examination, we aim to contribute valuable insights to 

the ongoing development and deployment of secure multi-party computation 

systems[5]. 

2. MPC Protocols Overview: 

Homomorphic encryption-based protocols leverage advanced cryptographic 

techniques to perform computations on encrypted data without the need for 

decryption, thus preserving the privacy of the data throughout the process[6]. 

A key example is Paillier encryption, which supports additive homomorphism, 

allowing operations such as secure summation of encrypted values[7]. This 

scheme enables parties to compute aggregates over encrypted inputs while 

maintaining data confidentiality. Another significant approach is the BGV 

scheme (Brakerski-Gentry-Vaikuntanathan), which provides fully 

homomorphic encryption (FHE) capabilities, supporting both additive and 

multiplicative operations on encrypted data[8]. This versatility allows for more 

complex computations compared to additive homomorphic encryption. 
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Homomorphic encryption-based protocols are highly valued for their ability to 

ensure strong data privacy, making them suitable for sensitive applications 

such as cloud computing and secure data analysis. However, they often incur 

substantial computational overhead and increased communication costs due to 

the complexity of the encryption and decryption processes[9, 10]. These 

performance challenges, while mitigated by ongoing research and 

optimizations, remain a critical consideration when deploying homomorphic 

encryption in practical scenarios. 

Protocols utilizing zero-knowledge proofs (ZKPs) represent a sophisticated 

method for achieving secure computations by allowing parties to prove the 

validity of certain statements without revealing any additional information. 

Zero-knowledge proofs are cryptographic techniques that enable a prover to 

convince a verifier that a statement is true without disclosing the underlying 

data or specifics of the proof. In the context of multi-party computation, ZKP-

based protocols ensure that the computations are executed correctly while 

preserving the privacy of the inputs and intermediate results[11, 12]. Notable 

examples include protocols based on zk-SNARKs (Zero-Knowledge Succinct 

Non-Interactive Arguments of Knowledge) and zk-STARKs (Zero-Knowledge 

Scalable Transparent Arguments of Knowledge). zk-SNARKs offer succinct 

proofs with short verification times, making them efficient for scenarios 

requiring quick validation, whereas zk-STARKs provide transparency and 

scalability by eliminating the need for a trusted setup and allowing for more 

robust security guarantees. These protocols are particularly useful in 

applications such as blockchain and privacy-preserving smart contracts, where 

both security and efficiency are paramount[13, 14]. Despite their advantages, 

ZKP-based protocols can be computationally intensive and require significant 

cryptographic expertise to implement effectively. Ongoing research aims to 

address these challenges by improving performance and reducing the 

computational burden associated with zero-knowledge proofs. 

3. Performance Metrics: 

Computational overhead refers to the additional computational resources 

required by a protocol to perform its operations compared to a non-secure or 

baseline approach[15]. In the context of multi-party computation (MPC) 

protocols, computational overhead encompasses the extra processing time and 

resource consumption needed for cryptographic operations, such as 

encryption, decryption, and secure function evaluations. For instance, 

protocols based on homomorphic encryption often involve complex 
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mathematical operations on encrypted data, which can be significantly more 

resource-intensive than operations on plaintext data. Similarly, secret sharing 

schemes may require extensive computational effort for generating and 

managing shares, as well as for reconstructing the secret[16]. Zero-knowledge 

proof protocols, while providing strong privacy guarantees, can also introduce 

considerable computational overhead due to the complexity of the proofs and 

the necessity for extensive cryptographic processing[17]. Efficiently managing 

computational overhead is crucial for ensuring that MPC protocols remain 

practical and scalable, especially in scenarios involving large datasets or 

numerous participants[18]. Advances in cryptographic techniques and 

optimization strategies continue to seek ways to minimize this overhead while 

maintaining robust security guarantees. 

Communication overhead refers to the additional network resources required 

for exchanging data among participants in a multi-party computation (MPC) 

protocol[19]. This includes the amount of data transmitted between parties, as 

well as the frequency and size of communication rounds necessary to complete 

the computation. In MPC protocols, communication overhead can be 

substantial, especially for protocols involving secret sharing or homomorphic 

encryption. For instance, secret sharing-based protocols may require each 

participant to send and receive multiple shares of the secret, resulting in 

increased data traffic[20, 21]. Similarly, homomorphic encryption protocols 

often involve transmitting encrypted data and intermediate results, which can 

lead to significant bandwidth consumption. Zero-knowledge proof protocols 

also contribute to communication overhead due to the need for exchanging 

proof data and verification messages[22]. High communication overhead can 

impact the efficiency and scalability of MPC protocols, particularly in 

environments with limited bandwidth or when scaling up to large numbers of 

participants. Addressing communication overhead through optimized protocol 

design and efficient data handling techniques is essential to improving the 

practicality and performance of secure multi-party computations[23]. 

4. Security Implications: 

Security guarantees in multi-party computation (MPC) protocols ensure that 

the privacy and integrity of participants' data are maintained throughout the 

computation process. These guarantees typically include confidentiality, 

integrity, and robustness. Confidentiality ensures that the inputs and 

intermediate results of the computation remain hidden from all parties except 

those explicitly authorized to see them[24]. This is achieved through techniques 

such as encryption and secret sharing, which prevent unauthorized access to 
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sensitive information. Integrity guarantees that the computation is performed 

correctly and that the results are accurate, even if some parties attempt to 

disrupt or corrupt the process. Robustness refers to the protocol's ability to 

handle adversarial behavior, including malicious participants who may try to 

breach security or manipulate the outcomes. Different security models, such as 

the semi-honest model and the malicious model, provide varying levels of 

assurance[25]. The semi-honest model assumes that parties follow the protocol 

but may attempt to learn additional information, while the malicious model 

accounts for participants who actively try to subvert the protocol. Ensuring 

strong security guarantees is crucial for the effective deployment of MPC 

protocols in sensitive applications, balancing the need for privacy with the 

requirement for reliable and accurate results[26]. 

Security models in multi-party computation (MPC) define the assumptions and 

guarantees regarding the behavior of participants and the protection of data. 

The two primary models are the semi-honest model and the malicious 

model[27]. The semi-honest model, also known as the honest-but-curious 

model, assumes that participants follow the protocol correctly but may attempt 

to infer additional information from the data they receive. This model provides 

security guarantees under the assumption that participants are honest in their 

execution of the protocol but curious about the private inputs and outputs of 

others. In contrast, the malicious model accommodates participants who may 

deliberately deviate from the protocol or attempt to disrupt the computation for 

personal gain[28]. This model requires more robust mechanisms to ensure that 

the protocol can withstand malicious attacks and still produce correct and 

reliable results. Security models influence the design and complexity of MPC 

protocols, with the malicious model generally requiring more sophisticated 

techniques and protocols to provide the same level of security as the semi-

honest model. Understanding these models is crucial for selecting appropriate 

MPC protocols based on the security requirements and the trust level among 

participants in various applications[29]. 

5. Comparative Analysis: 

Performance comparison in multi-party computation (MPC) involves evaluating 

different protocols based on their efficiency in terms of execution time, 

computational resources, and communication overhead. Execution time refers 

to the total duration required to complete the computation, which can be 

influenced by factors such as the complexity of cryptographic operations and 

the protocol's inherent design[30]. Computational resources include the CPU 

and memory usage during the computation, which varies significantly among 
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protocols depending on their underlying cryptographic techniques. For 

example, protocols based on homomorphic encryption often incur high 

computational costs due to complex operations on encrypted data, while secret 

sharing-based protocols may involve less intensive computations but require 

managing multiple shares[31]. Communication overhead, which includes the 

amount of data exchanged and the number of communication rounds, also 

plays a critical role in performance. Protocols with high communication 

overhead may be less practical in environments with limited bandwidth or 

when scaling to large numbers of participants. A thorough performance 

comparison helps in selecting the most suitable MPC protocol for a given 

application, balancing efficiency with the necessary security guarantees to 

meet specific requirements[32]. 

Security comparison in multi-party computation (MPC) focuses on assessing 

the robustness of different protocols against various types of attacks and their 

ability to protect participants' data throughout the computation process. This 

comparison involves evaluating how well each protocol upholds confidentiality, 

integrity, and robustness under different security models. Confidentiality 

measures how effectively a protocol prevents unauthorized access to sensitive 

data, ensuring that inputs and intermediate results remain private. Integrity 

guarantees that the computation is executed correctly and the results are 

accurate, even if some participants act maliciously[33]. Robustness assesses 

the protocol's ability to handle adversarial behavior, including participants who 

may attempt to disrupt or manipulate the computation. Protocols operating 

under the semi-honest model are designed to handle honest-but-curious 

participants, whereas those under the malicious model are equipped to 

counteract deliberate attempts to compromise the protocol. By comparing these 

aspects, one can determine which protocol offers the most appropriate security 

guarantees for different applications, considering factors such as the trust level 

among participants and the sensitivity of the data being processed[34]. This 

comparison is essential for selecting the right MPC protocol to ensure both 

security and practical feasibility. 

6. Conclusion: 

In conclusion, the comparative assessment of multi-party computation (MPC) 

protocols reveals significant insights into their performance and security trade-

offs, essential for selecting the most appropriate solution for various 

applications. Secret sharing-based protocols offer robust confidentiality 

through the distribution of data shares but may involve substantial 

communication overhead. Homomorphic encryption-based protocols provide 
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strong privacy by allowing computations on encrypted data, though they often 

come with high computational costs. Zero-knowledge proof protocols ensure 

rigorous security guarantees by allowing parties to verify computations without 

revealing sensitive information, yet they can be complex and resource-

intensive. The choice of MPC protocol depends on balancing these factors—

performance metrics such as execution time, computational and 

communication overhead, and security guarantees including confidentiality, 

integrity, and robustness. As the field of MPC continues to evolve, ongoing 

research and advancements are likely to enhance the efficiency and security of 

these protocols, making them increasingly practical for a wide range of 

applications. Understanding these dynamics is crucial for implementing secure 

and efficient multi-party computations in sensitive and data-intensive 

environments. 
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