
Academic Pinnacle https://academicpinnacle.com

Advances in Computer Sciences
Vol. 7 (2024)

https://academicpinnacle.com/index.php/acs

1

A Comparative Assessment of Multi-Party Computation

Protocols: Performance Metrics and Security

Implications

William K. Kwaku

Department of Computer Science, University of Ghana, Ghana

Abstract

 Multi-Party Computation (MPC) protocols enable secure computations across

multiple parties while preserving the privacy of their inputs. This paper

provides a comparative assessment of various MPC protocols by evaluating

their performance metrics and security implications. The study focuses on

established protocols such as Yao's Garbled Circuits, Secure Multi-Party

Computation (SMPC) with Homomorphic Encryption, and Secret Sharing

Schemes. We analyze their efficiency in terms of computational and

communication overhead, as well as their robustness against different types of

attacks. The findings aim to guide the selection of appropriate MPC protocols

for various applications based on specific security requirements and

performance constraints.

Keywords: Multi-Party Computation (MPC), Secret Sharing, Homomorphic

Encryption, Zero-Knowledge Proofs (ZKP), Performance Metrics, Computational

Overhead, Communication Overhead, Security Guarantees, Security Models.

1. Introduction:

Multi-Party Computation (MPC) has emerged as a pivotal technology in the

realm of secure computation, enabling multiple parties to collaboratively

compute a function over their combined inputs while preserving the privacy of

each participant’s data[1]. As data privacy concerns intensify and the demand

for secure collaborative processes grows, MPC provides a robust framework for

ensuring that sensitive information remains confidential even during joint

computations. The significance of MPC extends across various domains,

including secure financial transactions, privacy-preserving data analysis, and

collaborative machine learning. Despite its importance, selecting the

Advances in Computer Sciences Vol. 7 (2024)

2

appropriate MPC protocol for a given application involves balancing complex

trade-offs between performance and security.

The primary objective of this paper is to conduct a comprehensive comparative

assessment of existing MPC protocols, with a focus on evaluating their

performance metrics and security implications[2, 3]. By analyzing protocols

such as Yao’s Garbled Circuits, Secure Multi-Party Computation with

Homomorphic Encryption, and Secret Sharing Schemes, we aim to provide

insights into their respective strengths and weaknesses. This evaluation is

crucial for understanding how different protocols perform under varying

computational and communication constraints, and how they withstand

diverse security threats. The results of this study will guide researchers and

practitioners in choosing the most suitable MPC protocol for their specific

needs, based on detailed considerations of efficiency and security.

The structure of this paper is organized as follows: we begin with an overview of

key MPC protocols and their underlying mechanisms[4]. Next, we delve into an

analysis of their performance metrics, including computational and

communication overhead, and scalability. Following this, we explore the

security implications of each protocol, focusing on threat models, robustness

against attacks, and privacy guarantee. Finally, we present a comparative

analysis of the protocols, discuss the trade-offs between performance and

security, and offer recommendations based on various application scenarios.

Through this detailed examination, we aim to contribute valuable insights to

the ongoing development and deployment of secure multi-party computation

systems[5].

2. MPC Protocols Overview:

Homomorphic encryption-based protocols leverage advanced cryptographic

techniques to perform computations on encrypted data without the need for

decryption, thus preserving the privacy of the data throughout the process[6].

A key example is Paillier encryption, which supports additive homomorphism,

allowing operations such as secure summation of encrypted values[7]. This

scheme enables parties to compute aggregates over encrypted inputs while

maintaining data confidentiality. Another significant approach is the BGV

scheme (Brakerski-Gentry-Vaikuntanathan), which provides fully

homomorphic encryption (FHE) capabilities, supporting both additive and

multiplicative operations on encrypted data[8]. This versatility allows for more

complex computations compared to additive homomorphic encryption.

Advances in Computer Sciences Vol. 7 (2024)

3

Homomorphic encryption-based protocols are highly valued for their ability to

ensure strong data privacy, making them suitable for sensitive applications

such as cloud computing and secure data analysis. However, they often incur

substantial computational overhead and increased communication costs due to

the complexity of the encryption and decryption processes[9, 10]. These

performance challenges, while mitigated by ongoing research and

optimizations, remain a critical consideration when deploying homomorphic

encryption in practical scenarios.

Protocols utilizing zero-knowledge proofs (ZKPs) represent a sophisticated

method for achieving secure computations by allowing parties to prove the

validity of certain statements without revealing any additional information.

Zero-knowledge proofs are cryptographic techniques that enable a prover to

convince a verifier that a statement is true without disclosing the underlying

data or specifics of the proof. In the context of multi-party computation, ZKP-

based protocols ensure that the computations are executed correctly while

preserving the privacy of the inputs and intermediate results[11, 12]. Notable

examples include protocols based on zk-SNARKs (Zero-Knowledge Succinct

Non-Interactive Arguments of Knowledge) and zk-STARKs (Zero-Knowledge

Scalable Transparent Arguments of Knowledge). zk-SNARKs offer succinct

proofs with short verification times, making them efficient for scenarios

requiring quick validation, whereas zk-STARKs provide transparency and

scalability by eliminating the need for a trusted setup and allowing for more

robust security guarantees. These protocols are particularly useful in

applications such as blockchain and privacy-preserving smart contracts, where

both security and efficiency are paramount[13, 14]. Despite their advantages,

ZKP-based protocols can be computationally intensive and require significant

cryptographic expertise to implement effectively. Ongoing research aims to

address these challenges by improving performance and reducing the

computational burden associated with zero-knowledge proofs.

3. Performance Metrics:

Computational overhead refers to the additional computational resources

required by a protocol to perform its operations compared to a non-secure or

baseline approach[15]. In the context of multi-party computation (MPC)

protocols, computational overhead encompasses the extra processing time and

resource consumption needed for cryptographic operations, such as

encryption, decryption, and secure function evaluations. For instance,

protocols based on homomorphic encryption often involve complex

Advances in Computer Sciences Vol. 7 (2024)

4

mathematical operations on encrypted data, which can be significantly more

resource-intensive than operations on plaintext data. Similarly, secret sharing

schemes may require extensive computational effort for generating and

managing shares, as well as for reconstructing the secret[16]. Zero-knowledge

proof protocols, while providing strong privacy guarantees, can also introduce

considerable computational overhead due to the complexity of the proofs and

the necessity for extensive cryptographic processing[17]. Efficiently managing

computational overhead is crucial for ensuring that MPC protocols remain

practical and scalable, especially in scenarios involving large datasets or

numerous participants[18]. Advances in cryptographic techniques and

optimization strategies continue to seek ways to minimize this overhead while

maintaining robust security guarantees.

Communication overhead refers to the additional network resources required

for exchanging data among participants in a multi-party computation (MPC)

protocol[19]. This includes the amount of data transmitted between parties, as

well as the frequency and size of communication rounds necessary to complete

the computation. In MPC protocols, communication overhead can be

substantial, especially for protocols involving secret sharing or homomorphic

encryption. For instance, secret sharing-based protocols may require each

participant to send and receive multiple shares of the secret, resulting in

increased data traffic[20, 21]. Similarly, homomorphic encryption protocols

often involve transmitting encrypted data and intermediate results, which can

lead to significant bandwidth consumption. Zero-knowledge proof protocols

also contribute to communication overhead due to the need for exchanging

proof data and verification messages[22]. High communication overhead can

impact the efficiency and scalability of MPC protocols, particularly in

environments with limited bandwidth or when scaling up to large numbers of

participants. Addressing communication overhead through optimized protocol

design and efficient data handling techniques is essential to improving the

practicality and performance of secure multi-party computations[23].

4. Security Implications:

Security guarantees in multi-party computation (MPC) protocols ensure that

the privacy and integrity of participants' data are maintained throughout the

computation process. These guarantees typically include confidentiality,

integrity, and robustness. Confidentiality ensures that the inputs and

intermediate results of the computation remain hidden from all parties except

those explicitly authorized to see them[24]. This is achieved through techniques

such as encryption and secret sharing, which prevent unauthorized access to

Advances in Computer Sciences Vol. 7 (2024)

5

sensitive information. Integrity guarantees that the computation is performed

correctly and that the results are accurate, even if some parties attempt to

disrupt or corrupt the process. Robustness refers to the protocol's ability to

handle adversarial behavior, including malicious participants who may try to

breach security or manipulate the outcomes. Different security models, such as

the semi-honest model and the malicious model, provide varying levels of

assurance[25]. The semi-honest model assumes that parties follow the protocol

but may attempt to learn additional information, while the malicious model

accounts for participants who actively try to subvert the protocol. Ensuring

strong security guarantees is crucial for the effective deployment of MPC

protocols in sensitive applications, balancing the need for privacy with the

requirement for reliable and accurate results[26].

Security models in multi-party computation (MPC) define the assumptions and

guarantees regarding the behavior of participants and the protection of data.

The two primary models are the semi-honest model and the malicious

model[27]. The semi-honest model, also known as the honest-but-curious

model, assumes that participants follow the protocol correctly but may attempt

to infer additional information from the data they receive. This model provides

security guarantees under the assumption that participants are honest in their

execution of the protocol but curious about the private inputs and outputs of

others. In contrast, the malicious model accommodates participants who may

deliberately deviate from the protocol or attempt to disrupt the computation for

personal gain[28]. This model requires more robust mechanisms to ensure that

the protocol can withstand malicious attacks and still produce correct and

reliable results. Security models influence the design and complexity of MPC

protocols, with the malicious model generally requiring more sophisticated

techniques and protocols to provide the same level of security as the semi-

honest model. Understanding these models is crucial for selecting appropriate

MPC protocols based on the security requirements and the trust level among

participants in various applications[29].

5. Comparative Analysis:

Performance comparison in multi-party computation (MPC) involves evaluating

different protocols based on their efficiency in terms of execution time,

computational resources, and communication overhead. Execution time refers

to the total duration required to complete the computation, which can be

influenced by factors such as the complexity of cryptographic operations and

the protocol's inherent design[30]. Computational resources include the CPU

and memory usage during the computation, which varies significantly among

Advances in Computer Sciences Vol. 7 (2024)

6

protocols depending on their underlying cryptographic techniques. For

example, protocols based on homomorphic encryption often incur high

computational costs due to complex operations on encrypted data, while secret

sharing-based protocols may involve less intensive computations but require

managing multiple shares[31]. Communication overhead, which includes the

amount of data exchanged and the number of communication rounds, also

plays a critical role in performance. Protocols with high communication

overhead may be less practical in environments with limited bandwidth or

when scaling to large numbers of participants. A thorough performance

comparison helps in selecting the most suitable MPC protocol for a given

application, balancing efficiency with the necessary security guarantees to

meet specific requirements[32].

Security comparison in multi-party computation (MPC) focuses on assessing

the robustness of different protocols against various types of attacks and their

ability to protect participants' data throughout the computation process. This

comparison involves evaluating how well each protocol upholds confidentiality,

integrity, and robustness under different security models. Confidentiality

measures how effectively a protocol prevents unauthorized access to sensitive

data, ensuring that inputs and intermediate results remain private. Integrity

guarantees that the computation is executed correctly and the results are

accurate, even if some participants act maliciously[33]. Robustness assesses

the protocol's ability to handle adversarial behavior, including participants who

may attempt to disrupt or manipulate the computation. Protocols operating

under the semi-honest model are designed to handle honest-but-curious

participants, whereas those under the malicious model are equipped to

counteract deliberate attempts to compromise the protocol. By comparing these

aspects, one can determine which protocol offers the most appropriate security

guarantees for different applications, considering factors such as the trust level

among participants and the sensitivity of the data being processed[34]. This

comparison is essential for selecting the right MPC protocol to ensure both

security and practical feasibility.

6. Conclusion:

In conclusion, the comparative assessment of multi-party computation (MPC)

protocols reveals significant insights into their performance and security trade-

offs, essential for selecting the most appropriate solution for various

applications. Secret sharing-based protocols offer robust confidentiality

through the distribution of data shares but may involve substantial

communication overhead. Homomorphic encryption-based protocols provide

Advances in Computer Sciences Vol. 7 (2024)

7

strong privacy by allowing computations on encrypted data, though they often

come with high computational costs. Zero-knowledge proof protocols ensure

rigorous security guarantees by allowing parties to verify computations without

revealing sensitive information, yet they can be complex and resource-

intensive. The choice of MPC protocol depends on balancing these factors—

performance metrics such as execution time, computational and

communication overhead, and security guarantees including confidentiality,

integrity, and robustness. As the field of MPC continues to evolve, ongoing

research and advancements are likely to enhance the efficiency and security of

these protocols, making them increasingly practical for a wide range of

applications. Understanding these dynamics is crucial for implementing secure

and efficient multi-party computations in sensitive and data-intensive

environments.

References:

[1] S. Dodda, N. Kunchakuri, A. Kumar, and S. R. Mallreddy, "Automated Text

Recognition and Segmentation for Historic Map Vectorization: A Mask R-CNN

and UNet Approach," Journal of Electrical Systems, vol. 20, no. 7s, pp. 635-649,

2024.

[2] A. Kumar, S. Dodda, N. Kamuni, and V. S. M. Vuppalapati, "The Emotional

Impact of Game Duration: A Framework for Understanding Player Emotions in

Extended Gameplay Sessions," arXiv preprint arXiv:2404.00526, 2024.

[3] Y. Alexeev et al., "Quantum computer systems for scientific discovery," PRX

quantum, vol. 2, no. 1, p. 017001, 2021.

[4] A. A. Mir, "Transparency in AI Supply Chains: Addressing Ethical Dilemmas in

Data Collection and Usage," MZ Journal of Artificial Intelligence, vol. 1, no. 2,

2024.

[5] S. Lad, "Cybersecurity Trends: Integrating AI to Combat Emerging Threats in

the Cloud Era," Integrated Journal of Science and Technology, vol. 1, no. 8,

2024.

[6] S. Dodda, A. Kumar, N. Kamuni, and M. M. T. Ayyalasomayajula, "Exploring

Strategies for Privacy-Preserving Machine Learning in Distributed

Environments," Authorea Preprints, 2024.

[7] D. Bogdanov, M. Niitsoo, T. Toft, and J. Willemson, "High-performance secure

multi-party computation for data mining applications," International Journal of

Information Security, vol. 11, pp. 403-418, 2012.

[8] K. Peng et al., "Towards making the most of chatgpt for machine translation,"

arXiv preprint arXiv:2303.13780, 2023.

[9] H. Shah and N. Kamuni, "DesignSystemsJS-Building a Design Systems API for

aiding standardization and AI integration," in 2023 International Conference on

Computing, Networking, Telecommunications & Engineering Sciences Applications

(CoNTESA), 2023: IEEE, pp. 83-89.

Advances in Computer Sciences Vol. 7 (2024)

8

[10] A. A. Mir, "Sentiment Analysis of Social Media during Coronavirus and Its

Correlation with Indian Stock Market Movements," Integrated Journal of Science

and Technology, vol. 1, no. 8, 2024.

[11] J. S. Arlagadda Narasimharaju, "SystemC TLM2. 0 modeling of network-on-chip

architecture," Arizona State University, 2012.

[12] L. Braun, D. Demmler, T. Schneider, and O. Tkachenko, "Motion–a framework

for mixed-protocol multi-party computation," ACM Transactions on Privacy and

Security, vol. 25, no. 2, pp. 1-35, 2022.

[13] S. Dodda, A. Kumar, N. Kamuni, and M. M. T. Ayyalasomayajula, "Exploring

Strategies for Privacy-Preserving Machine Learning in Distributed

Environments."

[14] Q. Zhong, L. Ding, J. Liu, B. Du, and D. Tao, "Can chatgpt understand too? a

comparative study on chatgpt and fine-tuned bert," arXiv preprint

arXiv:2302.10198, 2023.

[15] A. Kumar, S. Dodda, N. Kamuni, and R. K. Arora, "Unveiling the Impact of

Macroeconomic Policies: A Double Machine Learning Approach to Analyzing

Interest Rate Effects on Financial Markets," arXiv preprint arXiv:2404.07225,

2024.

[16] A. A. Mir, "Optimizing Mobile Cloud Computing Architectures for Real-Time Big

Data Analytics in Healthcare Applications: Enhancing Patient Outcomes

through Scalable and Efficient Processing Models," Integrated Journal of Science

and Technology, vol. 1, no. 7, 2024.

[17] S. S. Gill et al., "AI for next generation computing: Emerging trends and future

directions," Internet of Things, vol. 19, p. 100514, 2022.

[18] N. Kamuni, I. Cruz, Y. Jaipalreddy, R. Kumar, and V. Pandey, "Fuzzy Intrusion

Detection Method and Zero-Knowledge Authentication for Internet of Things

Networks," International Journal of Intelligent Systems and Applications in

Engineering, vol. 12, no. 16s, pp. 289-296, 2024.

[19] S. Lad, "Harnessing Machine Learning for Advanced Threat Detection in

Cybersecurity," Innovative Computer Sciences Journal, vol. 10, no. 1, 2024.

[20] A. A. Mir, "Adaptive Fraud Detection Systems: Real-Time Learning from Credit

Card Transaction Data," Advances in Computer Sciences, vol. 7, no. 1, 2024.

[21] A. Katal, S. Dahiya, and T. Choudhury, "Energy efficiency in cloud computing

data centers: a survey on software technologies," Cluster Computing, vol. 26, no.

3, pp. 1845-1875, 2023.

[22] S. Bhattacharya, S. Dodda, A. Khanna, S. Panyam, A. Balakrishnan, and M.

Jindal, "Generative AI Security: Protecting Users from Impersonation and

Privacy Breaches," International Journal of Computer Trends and Technology,

vol. 72, no. 4, pp. 51-57, 2024.

[23] S. Dahiya, "Cloud Security Essentials for Java Developers Protecting Data and

Applications in a Connected World," Advances in Computer Sciences, vol. 7, no.

1, 2024.

Advances in Computer Sciences Vol. 7 (2024)

9

[24] N. Kamuni, S. Dodda, S. Chintala, and N. Kunchakuri, "Advancing Underwater

Communication: ANN-Based Equalizers for Improved Bit Error Rates," Available

at SSRN 4886833, 2022.

[25] S. Dahiya, "Developing AI-Powered Java Applications in the Cloud Harnessing

Machine Learning for Innovative Solutions," Innovative Computer Sciences

Journal, vol. 10, no. 1, 2024.

[26] N. Kamuni, M. Jindal, A. Soni, S. R. Mallreddy, and S. C. Macha, "Exploring

Jukebox: A Novel Audio Representation for Music Genre Identification in MIR,"

in 2024 3rd International Conference on Artificial Intelligence For Internet of

Things (AIIoT), 2024: IEEE, pp. 1-6.

[27] J. S. Arlagadda and N. Kamuni, "Hardware-Software Co-Design for Efficient

Deep Learning Acceleration," MZ Computing Journal, vol. 4, no. 1, 2023.

[28] N. Kamuni and J. S. Arlagadda, "Exploring Multi-Agent Reinforcement

Learning: Techniques, Applications, and Future Directions," Advances in

Computer Sciences, vol. 4, no. 1, 2021.

[29] S. Dahiya, "Java in the Cloud: Best Practices and Strategies Optimizing Code

for Performance and Scalability," MZ Computing Journal, vol. 5, no. 2, 2024.

[30] N. Kamuni and D. Panwar, "Enhancing Music Genre Classification through

Multi-Algorithm Analysis and User-Friendly Visualization," arXiv preprint

arXiv:2405.17413, 2024.

[31] J. S. Arlagadda and N. Kamuni, "Harnessing Machine Learning in Robo-

Advisors: Enhancing Investment Strategies and Risk Management," Journal of

Innovative Technologies, vol. 5, no. 1, 2022.

[32] S. Dahiya, "Safe and Robust Reinforcement Learning: Strategies and

Applications," Innovative Computer Sciences Journal, vol. 9, no. 1, 2023.

[33] A. Ucar, M. Karakose, and N. Kırımça, "Artificial intelligence for predictive

maintenance applications: key components, trustworthiness, and future

trends," Applied Sciences, vol. 14, no. 2, p. 898, 2024.

[34] J. S. A. Narasimharaju, "Smart Semiconductor Wafer Inspection Systems:

Integrating AI for Increased Efficiency."

